• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Ma (Li, Ma.) (学者:李明爱) | Tao, Zhang (Tao, Zhang.) (学者:张涛)

收录:

CPCI-S

摘要:

To address the lack of health status identification and poor stability problems in the rotating machinery equipment, this paper proposes a new method for health status identification of rolling bearing based on SVM and improved evidence theory. Firstly, in order to reflect the rolling health condition, we use the empirical mode decomposition (EMD) to extract energy value and the original part of the signal statistics constitute characteristic parameters. After that we take them as the input to SVM classifier for the initial classification. Then we construct the basic probability assignment (BPA) by the SVM classification results. Finally, the results of recognition are given based on recursive dynamic combining weight distribution and decision fusion. The experimental results show that this method can effectively identify Rolling health status, which has high recognition accuracy, stability, and broad applicability.

关键词:

SVM Datafusion Equipment health status identification D-S evidence theory Multi-Sensor

作者机构:

  • [ 1 ] [Li, Ma]Beijing Univ Technol, Sch Software Engn, Beijing, Peoples R China
  • [ 2 ] [Tao, Zhang]Beijing Univ Technol, Sch Software Engn, Beijing, Peoples R China

通讯作者信息:

  • 李明爱

    [Li, Ma]Beijing Univ Technol, Sch Software Engn, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF 2016 IEEE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2016)

ISSN: 2327-0594

年份: 2016

页码: 378-382

语种: 英文

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:429/3909540
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司