• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Li, Ma (Li, Ma.) (Scholars:李明爱) | Tao, Zhang (Tao, Zhang.) (Scholars:张涛)

Indexed by:

CPCI-S

Abstract:

To address the lack of health status identification and poor stability problems in the rotating machinery equipment, this paper proposes a new method for health status identification of rolling bearing based on SVM and improved evidence theory. Firstly, in order to reflect the rolling health condition, we use the empirical mode decomposition (EMD) to extract energy value and the original part of the signal statistics constitute characteristic parameters. After that we take them as the input to SVM classifier for the initial classification. Then we construct the basic probability assignment (BPA) by the SVM classification results. Finally, the results of recognition are given based on recursive dynamic combining weight distribution and decision fusion. The experimental results show that this method can effectively identify Rolling health status, which has high recognition accuracy, stability, and broad applicability.

Keyword:

SVM Datafusion Equipment health status identification D-S evidence theory Multi-Sensor

Author Community:

  • [ 1 ] [Li, Ma]Beijing Univ Technol, Sch Software Engn, Beijing, Peoples R China
  • [ 2 ] [Tao, Zhang]Beijing Univ Technol, Sch Software Engn, Beijing, Peoples R China

Reprint Author's Address:

  • 李明爱

    [Li, Ma]Beijing Univ Technol, Sch Software Engn, Beijing, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

PROCEEDINGS OF 2016 IEEE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2016)

ISSN: 2327-0594

Year: 2016

Page: 378-382

Language: English

Cited Count:

WoS CC Cited Count: 3

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:988/5356434
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.