• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yao, Zhenjie (Yao, Zhenjie.) | Zhang, Zhipeng (Zhang, Zhipeng.) | Xu, Li-Qun (Xu, Li-Qun.)

收录:

CPCI-S

摘要:

This paper proposes a CNN (Convolutional neural network) based blood vessel segmentation algorithm. Each pixel with its neighbors of the fundus image is checked by the CNN. The preliminary segmentation results of fundus images were refined by a two stages binarization and a morphological operation successively. The algorithm was tested on DRIVE dataset. While the specificity is 0.9603, sensitivity is 0.7731, which is very close to that of manual annotation. The sensitivity is 2% better than the ones found in current studies. The CNN based algorithm improves the segmentation of blood vessels performance significantly.

关键词:

fundus image vessel segmentation Two Stages Binarization CNN

作者机构:

  • [ 1 ] [Yao, Zhenjie]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 2 ] [Yao, Zhenjie]China Mobile Res Inst, Ctr Excellence mHlth & Smart Healthcare, Beijing, Peoples R China
  • [ 3 ] [Zhang, Zhipeng]China Mobile Res Inst, Ctr Excellence mHlth & Smart Healthcare, Beijing, Peoples R China
  • [ 4 ] [Xu, Li-Qun]China Mobile Res Inst, Ctr Excellence mHlth & Smart Healthcare, Beijing, Peoples R China

通讯作者信息:

  • [Yao, Zhenjie]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China;;[Yao, Zhenjie]China Mobile Res Inst, Ctr Excellence mHlth & Smart Healthcare, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF 2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1

ISSN: 2165-1701

年份: 2016

页码: 406-409

语种: 英文

被引次数:

WoS核心集被引频次: 34

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:12/3929716
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司