• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Bo (Liu, Bo.) (学者:刘博) | Yan, Shuo (Yan, Shuo.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Li, Yong (Li, Yong.)

收录:

CPCI-S EI Scopus

摘要:

In recent years, air quality has become a severe environmental problem in China. Since bad air quality brought significant influences on traffic and people's daily life, how to predict the future air quality precisely and subtly, has been an urgent and important problem. In this paper, a Spatio-Temporal Extreme Learning Machine (STELM) method is proposed for air quality prediction. STELM considers temporal and spatial characteristics of air quality data and related meteorological data, constructs a prediction model based on ELM, and realizes air quality prediction with more than 80% precision. A prototype system is implemented and the experiments on practical air quality data in Beijing validate the effectiveness of our method and system.

关键词:

extreme learning machine PM2.5 concentration prediction

作者机构:

  • [ 1 ] [Liu, Bo]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Yan, Shuo]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jianqiang]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Yong]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 刘博

    [Liu, Bo]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016)

年份: 2016

页码: 950-953

语种: 英文

被引次数:

WoS核心集被引频次: 14

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:291/3911656
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司