• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jian, Meng (Jian, Meng.) | Jia, Ting (Jia, Ting.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Zhang, Lei (Zhang, Lei.) | Wang, Dong (Wang, Dong.)

收录:

EI Scopus SCIE

摘要:

The popularity of online social curation networks takes benefits from its convenience to retrieve, collect, sort and share multimedia contents among users. With increasing content and user intent gap, effective recommendation becomes highly desirable for its further development. In this paper, we propose a content-based bipartite graph for image recommendation in social curation networks. Bipartite graph employs given sparse user-image interactions to infer user-image correlation for recommendation. Beside given user-image interactions, the user interacted visual content also reveals valuable user preferences. Visual content is embedded into the bipartite graph to extend the correlation density and the recommendation scope simultaneously. Furthermore, the content similarity is employed for recommendation reranking to improve the visual quality of recommended images. Experimental results demonstrate that the proposed method enhances the recommendation ability of the bipartite graph effectively.

关键词:

Personalized recommendation Social multimedia network Bipartite graph Visual correlation

作者机构:

  • [ 1 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Jia, Ting]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Zhang, Lei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Wang, Dong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • 毋立芳

    [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEURAL PROCESSING LETTERS

ISSN: 1370-4621

年份: 2020

期: 2

卷: 52

页码: 1445-1459

3 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:169/4517985
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司