• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Xiaojie (Liu, Xiaojie.) | Qiao, Yuanhua (Qiao, Yuanhua.) (学者:乔元华) | Chen, Xianghui (Chen, Xianghui.) | Miao, Jun (Miao, Jun.) | Duan, Lijuan (Duan, Lijuan.) (学者:段立娟)

收录:

CPCI-S EI Scopus

摘要:

A new approach for color image segmentation is proposed based on Kuramoto model in this paper. Firstly, the classic Kuramoto model which describes a global coupled oscillator network is changed to be one that is locally coupled to simulate the neuron activity in visual cortex and to describe the influence for phase changing by external stimuli. Secondly, a rebuilt method of coupled neuron activities is proposed by introducing and computing instantaneous frequency. Three oscillating curves corresponding to the pixel values of R, G, B for color image are formed by the coupled network and are added up to produce the superposition of oscillation. Finally, color images are segmented according to the synchronization of the oscillating superposition by extracting and checking the frequency of the oscillating curves. The performance is compared with that from other representative segmentation approaches.

关键词:

Kuramoto model Color image segmentation Neural Network

作者机构:

  • [ 1 ] [Liu, Xiaojie]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Yuanhua]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Chen, Xianghui]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Miao, Jun]Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
  • [ 5 ] [Duan, Lijuan]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔元华

    [Qiao, Yuanhua]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China;;[Miao, Jun]Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

7TH ANNUAL INTERNATIONAL CONFERENCE ON BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES, (BICA 2016)

ISSN: 1877-0509

年份: 2016

卷: 88

页码: 245-258

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:515/4294169
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司