• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Duan, Jianmin (Duan, Jianmin.) (学者:段建民) | Ren, Lu (Ren, Lu.) | Li, LongJie (Li, LongJie.) | Liu, Dan (Liu, Dan.)

收录:

CPCI-S EI Scopus

摘要:

With the increase of traffic jams, the intelligent vehicle gains more and more attention. They exploit exteroceptive sensors to have an accurate perception of the surroundings in the urban environment, like a multi-layer laser radar or camera. This paper presents an occupancy grid framework to handle uncertainty sources caused by laser radar. The inverse sensor model in Cartesian coordinate is used to transform the sensor data into occupancy grid map. Two grids are used, local grid map which transforms the current sensor data and global grid map performing the temporal integration of data in a fixed frame based on Dempster's rule of combination and PCR2. The conflict information is used to detect the moving objects, the expansion algorithm, erosion algorithm and the priority marking algorithm based on regional growing are used for the cluster analysis, and box models are established for the moving objects. The outdoor experimental results show that such a perception strategy can steadily and accurately detect the moving objects.

关键词:

DST laser radar intelligent vehicle PCR2 moving object detection

作者机构:

  • [ 1 ] [Duan, Jianmin]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing, Peoples R China
  • [ 2 ] [Ren, Lu]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing, Peoples R China
  • [ 3 ] [Li, LongJie]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing, Peoples R China
  • [ 4 ] [Liu, Dan]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing, Peoples R China

通讯作者信息:

  • 段建民

    [Duan, Jianmin]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 2

ISSN: 2157-8982

年份: 2016

页码: 73-76

语种: 英文

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:1545/3867582
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司