• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jian (Li, Jian.) | Su, Li (Su, Li.) | Wu, Bo (Wu, Bo.) | Pang, Junbiao (Pang, Junbiao.) (学者:庞俊彪) | Wang, Chunfeng (Wang, Chunfeng.) | Wu, Zhe (Wu, Zhe.) | Huang, Qingming (Huang, Qingming.) (学者:黄庆明)

收录:

CPCI-S

摘要:

We proposed a novel model to predict human's visual attention when free-viewing webpages. Compared with natural images, webpages are usually full of salient regions such as logos, text, and faces, while few of them attract human's attention in a short sight. Moreover, webpages perform distinct viewing patterns which are quite different from the natural images In this paper, we introduced multi-features according to our observation on webpages characters and related eye-tracking data. Further, in order to achieve a flexible adaptation to various types of webpages, we employed a machine-learning framework based on our proposed features. Experimental results demonstrate that our model outperforms other state-of-the-art methods in webpage saliency prediction.

关键词:

Webpages viewing Support vector machine Multi-features Saliency

作者机构:

  • [ 1 ] [Li, Jian]Beijing Univ Posts & Telecommun, Beijing, Peoples R China
  • [ 2 ] [Su, Li]Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Mgmt, Beijing, Peoples R China
  • [ 3 ] [Wang, Chunfeng]Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Mgmt, Beijing, Peoples R China
  • [ 4 ] [Wu, Zhe]Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Mgmt, Beijing, Peoples R China
  • [ 5 ] [Huang, Qingming]Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Mgmt, Beijing, Peoples R China
  • [ 6 ] [Su, Li]Chinese Acad Sci, Inst Comp Teth, Key Lab Intel Inf Proc, Beijing 100864, Peoples R China
  • [ 7 ] [Wang, Chunfeng]Chinese Acad Sci, Inst Comp Teth, Key Lab Intel Inf Proc, Beijing 100864, Peoples R China
  • [ 8 ] [Wu, Zhe]Chinese Acad Sci, Inst Comp Teth, Key Lab Intel Inf Proc, Beijing 100864, Peoples R China
  • [ 9 ] [Huang, Qingming]Chinese Acad Sci, Inst Comp Teth, Key Lab Intel Inf Proc, Beijing 100864, Peoples R China
  • [ 10 ] [Wu, Bo]Capital Med Univ, Beijing, Peoples R China
  • [ 11 ] [Pang, Junbiao]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing, Peoples R China

通讯作者信息:

  • 黄庆明

    [Su, Li]Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Mgmt, Beijing, Peoples R China;;[Huang, Qingming]Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Mgmt, Beijing, Peoples R China;;[Su, Li]Chinese Acad Sci, Inst Comp Teth, Key Lab Intel Inf Proc, Beijing 100864, Peoples R China;;[Huang, Qingming]Chinese Acad Sci, Inst Comp Teth, Key Lab Intel Inf Proc, Beijing 100864, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)

ISSN: 1522-4880

年份: 2016

页码: 674-678

语种: 英文

被引次数:

WoS核心集被引频次: 23

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:1541/4284242
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司