• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Qing (Zhao, Qing.) | Wang, Dan (Wang, Dan.) (学者:王丹) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Akhtar, Faheem (Akhtar, Faheem.)

收录:

EI Scopus SCIE

摘要:

The accumulation and explosive growth of the electronic medical records (EMRs) make the name entity recognition (NER) technologies become critical for the meaningful use of EMR data and then the practice of evidence-based medicine. The dominate NER approaches use the distributed representation of the words and characters to build deep learning-based NER models. However, for the task of biomedical named entity recognition, there are a large amount of complicated medical terminologies that are composed of multiple words. Splitting these terminologies to learn the word and character embeddings might cause semantic ambiguities. In this paper, we treat each medical terminology as a concept and propose a concept-enhanced named entity recognition model (CNER), where the features from three different granularities (i.e., concept, word, and character) are combined together for bio-NER. The extensive experiments are conducted on two real-world corpora: fully labeled corpus and partially labeled corpus. CNER achieves the highest F1 score (fully labeled corpus: precision = 88.23, recall = 88.29, and F1 = 88.26; partially labeled corpus: precision = 87.03, recall = 88.19, and F1 = 87.61) by outperforming the baseline CW-BLSTM-CRF approach for 0.58% and 1.15% respectively, which demonstrates the effectiveness of the proposed approach.

关键词:

Semantic information analysis Concept feature Deep neural network (DNN) Named entity recognition (NER)

作者机构:

  • [ 1 ] [Zhao, Qing]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Dan]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 4 ] [Akhtar, Faheem]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 5 ] [Akhtar, Faheem]Sukkur IBA Univ, Dept Comp Sci, Sukkur 65200, Pakistan

通讯作者信息:

  • [Zhao, Qing]Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF SUPERCOMPUTING

ISSN: 0920-8542

年份: 2020

期: 8

卷: 76

页码: 6399-6420

3 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1977/4279251
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司