• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tao, Fei (Tao, Fei.) | Pang, Junbiao (Pang, Junbiao.) (学者:庞俊彪) | Zhang, Chunjie (Zhang, Chunjie.) | Li, Liang (Li, Liang.) | Su, Li (Su, Li.) | Zhang, Weigang (Zhang, Weigang.) | Huang, Qingming (Huang, Qingming.) (学者:黄庆明) | Su, Guiping (Su, Guiping.)

收录:

CPCI-S

摘要:

In web topic detection, detecting "hot" topics from enormous User- Generated Content (UGC) on web data poses two main difficulties that conventional approaches can barely handle: 1) poor feature representations from noisy images and short texts; and 2) uncertain roles of modalities where visual content is either highly or weakly relevant to textual cues due to less-constrained data. In this paper, following the detection by ranking approach, we address the problem by learning a robust shared representation from multiple, noisy and complementary features, and integrating both textual and visual graphs into a k-NearestNeighbor Similarity Graph (k-N(2)SG). Then Non-negative Matrix Factorization using Random walk (NMFR) is introduced to generate topic candidates. An efficient fusion of multiple graphs is then done by a Latent Poisson Deconvolution (LPD) which consists of a poisson deconvolution with sparse basis similarities for each edge. Experiments show significantly improved accuracy of the proposed approach in comparison with the state-of-the-art methods on two public data sets.

关键词:

Cross Media Similarity Cascade Latent Poisson Deconvolution Multi-view Learning Topic Detection

作者机构:

  • [ 1 ] [Tao, Fei]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
  • [ 2 ] [Zhang, Chunjie]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
  • [ 3 ] [Li, Liang]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
  • [ 4 ] [Su, Li]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
  • [ 5 ] [Zhang, Weigang]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
  • [ 6 ] [Huang, Qingming]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
  • [ 7 ] [Su, Guiping]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
  • [ 8 ] [Pang, Junbiao]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 9 ] [Zhang, Chunjie]Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
  • [ 10 ] [Li, Liang]Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
  • [ 11 ] [Su, Li]Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
  • [ 12 ] [Huang, Qingming]Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
  • [ 13 ] [Su, Guiping]Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China

通讯作者信息:

  • [Tao, Fei]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME)

ISSN: 1945-7871

年份: 2016

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:278/4611308
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司