• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ren, Dongyue (Ren, Dongyue.) | Zhuo, Li (Zhuo, Li.) | Long, Haixia (Long, Haixia.) | Qu, Panting (Qu, Panting.) | Zhang, Jing (Zhang, Jing.)

收录:

CPCI-S EI Scopus

摘要:

Due to the wide variety of copy videos, the existing video copy detection methods using single feature face great challenges, especially for video content matching, which are difficult to deal with various copy video transformations. To overcome this problem, a video copy detection method based on sparse representation of MPEG-2 spatial and temporal features is proposed in this paper. Firstly, the key frames are extracted based on visual saliency model; Then the global feature (HSV color histograms) and local feature (ORB features) are extracted from the key frames; Meanwhile, the key frames are represented compactly by sparse coding which exploits ORB features, and motion vectors (MV) extracted from the video bitstreams are exploited to build MV angle histograms. Finally, spatial feature and temporal feature are compared respectively, and matching results are fused to generate the final copy detection judgement. The experimental results on dataset TRECVID 2009 show that the proposed method presents better robustness and higher time efficiency.

关键词:

visual saliency model video copy detection spatial and temporal features sparse coding

作者机构:

  • [ 1 ] [Ren, Dongyue]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 2 ] [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 3 ] [Long, Haixia]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 4 ] [Qu, Panting]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 5 ] [Zhang, Jing]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China

通讯作者信息:

  • [Ren, Dongyue]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM)

年份: 2016

页码: 233-236

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:542/4957845
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司