• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Xu, Yaowen (Xu, Yaowen.) | Xu, Xiao (Xu, Xiao.) | Qi, Wei (Qi, Wei.) | Jian, Meng (Jian, Meng.)

收录:

CPCI-S EI Scopus

摘要:

Face liveness detection is an interesting research topic in face-based online authentication. The current face liveness detection algorithms utilize either static or dynamic features, but not both. In fact, the dynamic and static features have different advantages in face liveness detection. In this paper, we discuss a scheme to combine dynamic and static features that combines the strength of each. First, the dynamic maps are obtained from the inter frame motion in the video. Then, using a Convolutional Neural Network (CNN), the dynamic and static features are extracted from the dynamic maps and the images, respectively. Next, the fully connected layers from the CNN that include the dynamic and static features are connected to form the fused features. Finally, the fused features are used to train a two-value Support Vector Machine (SVM) classifier, which classify the images into two groups, images with real faces and images with fake faces. We conduct experiments to assess our algorithm that includes classifying images from two public databases. Experimental results demonstrate that our algorithm outperforms current state-of-the-art face liveness detection algorithms.

关键词:

Convolutional Neural Network (CNN) Deep learning Dynamic features Face liveness detection Static features

作者机构:

  • [ 1 ] [Wu, Lifang]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Xu, Yaowen]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Xu, Xiao]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Qi, Wei]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Jian, Meng]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 毋立芳

    [Wu, Lifang]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

BIOMETRIC RECOGNITION

ISSN: 0302-9743

年份: 2016

卷: 9967

页码: 628-636

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:388/3659363
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司