• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cai, Yongquan (Cai, Yongquan.) (学者:蔡永泉) | Jiang, Yuchen (Jiang, Yuchen.)

收录:

CPCI-S

摘要:

Support Vector Data Description (SVDD) has a limitation for dealing with a large dataset or online learning tasks. This work investigates the practice of credit scoring and proposes a new incremental learning algorithm for SVDD based on Karush-Kuhn-Tucker (KKT) conditions and convex hull. Convex hull and part of newly added samples which violates KKT conditions are treated as new training samples instead of previous support vector and entire new arrived samples. The proposed method can achieve comparable training time with traditional incremental learning algorithm for SVDD while have similar classification accuracy with original SVDD.

关键词:

convex hull incremental learning KKT credit scoring SVDD

作者机构:

  • [ 1 ] [Cai, Yongquan]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 10024, Peoples R China
  • [ 2 ] [Jiang, Yuchen]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 10024, Peoples R China

通讯作者信息:

  • 蔡永泉

    [Cai, Yongquan]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 10024, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2016 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS)

ISSN: 2326-2338

年份: 2016

页码: 175-178

语种: 英文

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:204/4512558
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司