• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Ming-ai (Li, Ming-ai.) (学者:李明爱) | Zhang, Meng (Zhang, Meng.) | Sun, Yan-jun (Sun, Yan-jun.)

收录:

CPCI-S

摘要:

The Motor Imagery electroencephalogram (MI-EGG) is time varying and subject-specific, its recognition needs the perfect adaptability and combination of feature extraction method and classifier. In this paper, Deep Belief Networks (DBN) is integrated with Wavelet Packet Transform (WPT) to yield a novel recognition method, denoted as WPT-DBN. Firstly, the MI-EEG is transformed into power signal and analyze the effective time domain. Then, WPT is applied to each channel of MI-EEG to obtain the effective time-frequency information. Finally, DBN is used for the identification and classification simultaneously. Experiments are conducted on a publicly available dataset, and the 5-fold cross validation experimental results show that WPT-DBN yields relatively higher classification accuracies compared to the existing approaches.

关键词:

Brain Computer Interface Motor Imagery EEG Softmax Deep Learning. Deep Belief Networks Wavelet Packet Transform

作者机构:

  • [ 1 ] [Li, Ming-ai]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 2 ] [Zhang, Meng]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 3 ] [Sun, Yan-jun]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China

通讯作者信息:

  • 李明爱

    [Li, Ming-ai]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION

ISSN: 2352-5398

年份: 2016

卷: 47

页码: 728-733

语种: 英文

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:725/3915908
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司