• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Rui (Li, Rui.) | Liu, Pengyu (Liu, Pengyu.) | Jia, Kebin (Jia, Kebin.) (学者:贾克斌) | Wu, Qiang (Wu, Qiang.)

收录:

CPCI-S EI Scopus

摘要:

This paper presents a novel facial expression recognition approach in the presence of partial occlusion using Gabor filters and gray-level co-occurrence matrix (GLCM). At first, we design an algorithm to extract the block Gabor feature statistics according to the spatial distribution of the face organ. Then, GLCM is firstly introduced into expression recognition field to make up for the deficiency of block Gabor feature, in which the association between pixels is absent. Finally, the block Gabor feature statistics is linear superimposed with the texture feature extracted by GLCM, after Gaussian normalization there generates a set of lowdimensional feature vectors for expression feature representation. The experimental results on JAFFE and RaFD show the high robustness and better recognition rates of the proposed novel approach under different types of occlusion.

关键词:

partial occlusion facial expression recognition gray-level co-occurrence matrix gaussian normalization gabor filter

作者机构:

  • [ 1 ] [Li, Rui]Beijing Univ Technol, Dept Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 2 ] [Liu, Pengyu]Beijing Univ Technol, Dept Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 3 ] [Jia, Kebin]Beijing Univ Technol, Dept Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 4 ] [Wu, Qiang]Beijing Univ Technol, Dept Elect Informat & Control Engn, Beijing, Peoples R China

通讯作者信息:

  • [Li, Rui]Beijing Univ Technol, Dept Elect Informat & Control Engn, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN)

ISSN: 2375-8244

年份: 2015

页码: 347-351

语种: 英文

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:2475/4264072
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司