• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li Fanjun (Li Fanjun.) | Qiao Junfei (Qiao Junfei.) (学者:乔俊飞) | Zhang Wei (Zhang Wei.)

收录:

CPCI-S

摘要:

In this paper, a fast growing cascade neural network (FGCNN) is proposed, as a software sensor, to rapidly estimate the biochemical oxygen demand (BOD) in wastewater treatment plants (WWTPs). Firstly, a novel method, based on the orthogonal least squares (OLS), is put forward to add input and hidden units to the existing network one by one. Every unit added to the network affords the maximal reduction of the sum of squared errors (SSE). Then, the FGCNN incrementally updates its output weights by iterations without gradients and generalized inverses, while the other weights remain unchanged during the growth of the network. The simple and effective training method make the FGCNN learn extremely fast. Finally, the proposed FGCNN is applied to estimate the BOD in WWTPs using other easy-to-measure or secondary variables. The experiment results show that the FGCNN has better performance on real-time estimation of BOD than other similar methods.

关键词:

Artificial neural network biochemical oxygen demand software sensor wastewater treatment plant

作者机构:

  • [ 1 ] [Li Fanjun]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao Junfei]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang Wei]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Li Fanjun]Univ Jinan, Sch Math Sci, Shandong 250022, Peoples R China
  • [ 5 ] [Li Fanjun]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang Wei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Li Fanjun]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2015 34TH CHINESE CONTROL CONFERENCE (CCC)

ISSN: 2161-2927

年份: 2015

页码: 3417-3422

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:476/3700679
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司