• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hao, Yue (Hao, Yue.) | Bao, Changchun (Bao, Changchun.) (学者:鲍长春) | Bao, Feng (Bao, Feng.) | Deng, Feng (Deng, Feng.)

收录:

CPCI-S Scopus

摘要:

In this paper, a data-driven speech enhancement method based on modeled long-range temporal dynamics (LRTDs) is proposed. First, given speech and noise corpora, Gaussian Mixture Models (GMMs) of the speech and noise can be trained respectively based on the expectation-maximization (EM) algorithm. Then, the LRTDs are obtained from the GMM models. Next, based on the LRTDs, a noise robustness longest segment searching (NRLSS) method combined with the Vector Taylor Series (VTS) approximation algorithm is adopted to search the longest matching speech and noise segments (LMSNS) from speech and noise corpora. Finally, using the obtained LMSNS, the estimation of speech spectrum is achieved. Furthermore, a modified Wiener filter is constructed to further eliminate residual noise. The test results show that the proposed method outperforms the state-of-the-art speech enhancement methods.

关键词:

modified Wiener filter LRTDs GMM speech enhancement VTS NRLSS

作者机构:

  • [ 1 ] [Hao, Yue]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China
  • [ 2 ] [Bao, Changchun]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China
  • [ 3 ] [Bao, Feng]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China
  • [ 4 ] [Deng, Feng]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China

通讯作者信息:

  • [Hao, Yue]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5

年份: 2015

页码: 1790-1794

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:586/3895419
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司