• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Xiaodong (Wang, Xiaodong.) | Li, Mi (Li, Mi.) (学者:栗觅) | Lu, Shengfu (Lu, Shengfu.) | Zhong, Ning (Zhong, Ning.)

收录:

CPCI-S

摘要:

This study proposed an adaptive mutation particle swarm optimization (AMPSO) for parameters optimization of support vector machines (SVM). The improved inertia weight and mutation mechanism aimed to balance the global and local search, which could improve the recognition accuracy of SVM. The experimental results showed that compared with grid and particle swarm optimization (PSO), classification accuracy of the proposed AMPSO-SVM model can be significantly increased.

关键词:

parameters optimization Particle swarm optimization pattern recognition support vector machines

作者机构:

  • [ 1 ] [Wang, Xiaodong]Beijing Univ Technol, Int WIC Inst, Beijing, Peoples R China
  • [ 2 ] [Li, Mi]Beijing Univ Technol, Int WIC Inst, Beijing, Peoples R China
  • [ 3 ] [Lu, Shengfu]Beijing Univ Technol, Int WIC Inst, Beijing, Peoples R China
  • [ 4 ] [Zhong, Ning]Beijing Univ Technol, Int WIC Inst, Beijing, Peoples R China
  • [ 5 ] [Wang, Xiaodong]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing, Peoples R China
  • [ 6 ] [Li, Mi]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing, Peoples R China
  • [ 7 ] [Lu, Shengfu]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing, Peoples R China
  • [ 8 ] [Zhong, Ning]Beijing Int Collaborat Base Brain Informat & Wisd, Beijing, Peoples R China
  • [ 9 ] [Wang, Xiaodong]Beijing Key Lab MRI & Brain Informat, Beijing, Peoples R China
  • [ 10 ] [Li, Mi]Beijing Key Lab MRI & Brain Informat, Beijing, Peoples R China
  • [ 11 ] [Lu, Shengfu]Beijing Key Lab MRI & Brain Informat, Beijing, Peoples R China
  • [ 12 ] [Zhong, Ning]Beijing Key Lab MRI & Brain Informat, Beijing, Peoples R China
  • [ 13 ] [Zhong, Ning]Maebashi Inst Technol, Maebashi, Gunma, Japan

通讯作者信息:

  • 栗觅

    [Li, Mi]Beijing Univ Technol, Int WIC Inst, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING APPLICATIONS (CSEA 2015)

年份: 2015

页码: 665-669

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:657/3578588
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司