• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji Xin-rong (Ji Xin-rong.) | Hou Cui-qin (Hou Cui-qin.) | Hou Yi-bin (Hou Yi-bin.) (学者:侯义斌) | Li Da (Li Da.)

收录:

CPCI-S

摘要:

Due to the limited energy, memory space and processing ability on wireless sensor nodes, the batch learning method will be infeasible for larger number of samples or sequence samples. This paper focuses on the incremental learning method for kernel machine by involving L1 regularized, a novel incremental learning algorithm for L1 regularized Kernel Minimum Squared Error machine (L1-KMSE-Increm) is proposed and evaluated on both synthetic and real data sets. The simulation results reveal that L1-KMSE-Increm algorithm can obtain almost the same prediction accuracy as that of corresponding batch learning method, and significantly outperforms the competitor on the sparse ratio of model and the running time.

关键词:

L1 Regularized Incremental Learning Method Kernel Machine Wireless Sensor Network (WSN)

作者机构:

  • [ 1 ] [Ji Xin-rong]Beijing Univ Technol, Embedded Comp Inst, Beijing, Peoples R China
  • [ 2 ] [Hou Cui-qin]Beijing Univ Technol, Embedded Comp Inst, Beijing, Peoples R China
  • [ 3 ] [Hou Yi-bin]Beijing Univ Technol, Embedded Comp Inst, Beijing, Peoples R China
  • [ 4 ] [Li Da]Beijing Engn Res Ctr IOT Software & Syst, Beijing, Peoples R China
  • [ 5 ] [Ji Xin-rong]Hebei Univ Engn, Sch Informat & Elect Engn, Handan, Peoples R China

通讯作者信息:

  • 侯义斌

    [Hou Yi-bin]Beijing Univ Technol, Embedded Comp Inst, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND INDUSTRIAL INFORMATICS

ISSN: 2352-538X

年份: 2015

卷: 31

页码: 397-403

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:481/4956964
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司