• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Meng-jie (Zhang, Meng-jie.) | Lv, Sheng-fu (Lv, Sheng-fu.) | Li, Mi (Li, Mi.) (学者:栗觅)

收录:

CPCI-S

摘要:

Web page is an important human-computer interface and the classification of visual behavior on web page has drawn widely attention recently. People's visual behavior can be reflected by recording users' eye movement data and analyzing eye movement features. This paper studies the problem of web page visual behavior classification based on the deep learning approach. Compared with most existing works with traditional deep neural network architecture, where either supervised learning or unsupervised learning is adopted, this paper propose a comprehensive deep neural network architecture, considering both denoising auto-encoders based unsupervised learning and error back-propagation based supervised learning. The experimental results show that the proposed comprehensive neural network architecture achieves better performance than most existing classical pure supervised learning or unsupervised learning architecture.

关键词:

Auto-encoders Web page visual behavior Deep learning Back-propagation

作者机构:

  • [ 1 ] [Zhang, Meng-jie]Beijing Univ Technol, Elect Informat & Control Engn Coll, Beijing, Peoples R China
  • [ 2 ] [Lv, Sheng-fu]Beijing Univ Technol, Elect Informat & Control Engn Coll, Beijing, Peoples R China
  • [ 3 ] [Li, Mi]Beijing Univ Technol, Elect Informat & Control Engn Coll, Beijing, Peoples R China

通讯作者信息:

  • [Zhang, Meng-jie]Beijing Univ Technol, Elect Informat & Control Engn Coll, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING (ICEECE 2015)

年份: 2015

页码: 266-270

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:589/4949790
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司