• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Kang (Wang, Kang.) | Bu, Kun (Bu, Kun.) | Zhang, Yipeng (Zhang, Yipeng.) | Li, Xiaoli (Li, Xiaoli.) (学者:李晓理)

收录:

EI Scopus SCIE

摘要:

Modelling and predicting the suspect activity trajectory are of great importance for preventing and fighting crime in the food safety area. Combing artificial intelligence and the multiple U-model algorithm, this paper represents a novel approach to predict the suspect activity trajectory. Based on social text data, emotional assessment is conducted using the LSTM network to detect food safety criminal suspects. Activity trajectories of criminal suspects are clustered using the graphic clustering method based on the GPS data. U-model with the sliding window algorithm is proposed to model activity trajectories. Further, the multiple U-model strategy is proposed to predict the activity trajectory based on the accumulated model error of previous positions and multiple clustered trajectories. The simulation study shows that the proposed scheme can detect food safety criminal suspects and predict their activity trajectories effectively.

关键词:

作者机构:

  • [ 1 ] [Wang, Kang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Bu, Kun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Yipeng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Xiaoli]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Xiaoli]Beijing Key Lab Computat Intelligence & Intellig, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Xiaoli]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Kang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

MATHEMATICAL PROBLEMS IN ENGINEERING

ISSN: 1024-123X

年份: 2020

卷: 2020

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:604/3906639
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司