• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, XinFeng (Zhang, XinFeng.) | Zhang, Jing (Zhang, Jing.) | Hu, GuangQin (Hu, GuangQin.) | Wang, YaZhen (Wang, YaZhen.)

收录:

CPCI-S Scopus

摘要:

Tongue diagnosis characterization is a key research issue in the development of Traditional Chinese Medicine (TCM). Many kinds of information, such as tongue body color, coat color and coat thickness, can be reflected from a tongue image. That is, tongue images are multi-label data. However, traditional supervised learning is used to model single-label data. In this paper, multi-label learning is applied to the tongue image classification. Color features and texture features are extracted after separation of tongue coat and body, and multi-label learning algorithms are used for classification. Results showed LEAD (Multi-Label Learning by Exploiting Label Dependency), a multi-label learning algorithm demonstrating to exploit correlations among labels, is superior to the other multi-label algorithms. At last, the iteration algorithm is used to set an optimal threshold for each label to improve the results of LEAD. In this paper, we have provided an effective way for computer aided TCM diagnosis.

关键词:

Tongue diagnosis Multi-label learning Tongue image

作者机构:

  • [ 1 ] [Zhang, XinFeng]Beijing Univ Technol, Coll Elect Informat & Control Engn, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Jing]Beijing Univ Technol, Coll Elect Informat & Control Engn, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 3 ] [Hu, GuangQin]Beijing Univ Technol, Coll Elect Informat & Control Engn, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, YaZhen]Beijing Univ Technol, Coll Elect Informat & Control Engn, Signal & Informat Proc Lab, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, XinFeng]Beijing Univ Technol, Coll Elect Informat & Control Engn, Signal & Informat Proc Lab, 100 Pingleyuan Chaoyang Dist, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2015, PT III

ISSN: 0302-9743

年份: 2015

卷: 9227

页码: 208-220

语种: 英文

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:163/3911209
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司