• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Feng, Deng (Feng, Deng.)

收录:

CPCI-S

摘要:

Recommender systems are used to recommend items for user in e-commerce with information overload. Utility-based recommender systems build multi-attribute utility function of user and recommend the highest utility item for user. Some utility-based recommender systems use rating for items to extract utility function, which produce significant burden for user. The paper proposes a utility-based recommender technique which can predict attribute value utility and implicit holistic utility rate of items by user browsing behavior and genetic algorithm, and elicit the attribute weight by genetic algorithm, and building a multi-attribute utility function. The experimental results on clothing recommendation show that the proposed method is superior to current utility-based methods on accuracy, satisfaction, usefulness and time expense.

关键词:

genetic algorithm implicit utility browsing behavior multi-attribute utility recommended system

作者机构:

  • [ 1 ] Beijing Univ Technol, Coll Econ & Management, Beijing, Peoples R China

通讯作者信息:

  • [Feng, Deng]Beijing Univ Technol, Coll Econ & Management, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING

ISSN: 2352-5401

年份: 2015

卷: 8

页码: 860-864

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:2388/3875269
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司