• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Liang (Chen, Liang.) | Xu, Shuo (Xu, Shuo.) (学者:徐硕) | Zhu, Lijun (Zhu, Lijun.) | Zhang, Jing (Zhang, Jing.) | Lei, Xiaoping (Lei, Xiaoping.) | Yang, Guancan (Yang, Guancan.)

收录:

SSCI Scopus SCIE

摘要:

The text-based patent analysis is grounded in information extraction technique. However, such technique suffers from obvious defects such as low degree of automation and unsatisfactory extraction accuracy. To deal with these problems, after an information schema is pre-defined, which contains 17 types of entities and 15 types of semantic relations, a dataset of 1010 patent abstracts is annotated and opened freely to the research community. Then, a novel patent information extraction framework is proposed, in which two deep-learning models, BiLSTM-CRF and BiGRU-HAN, are respectively used for entity identification and semantic relation extraction. Finally, to demonstrate the advantages of the new framework, extensive experiments are conducted, and the SAO method and PCNNs model are taken as respective baselines on the framework and module levels. Experimental results show that our framework out-performs the traditional one in terms of automation and accuracy, and is capable of extracting fine-grained structured information from patent texts.

关键词:

BiGRU-HAN BiLSTM-CRF PCNNs SAO Patent analysis Entity identification Thin film head Deep learning Relation extraction

作者机构:

  • [ 1 ] [Chen, Liang]Inst Sci & Tech Informat China, Beijing 100038, Peoples R China
  • [ 2 ] [Zhu, Lijun]Inst Sci & Tech Informat China, Beijing 100038, Peoples R China
  • [ 3 ] [Zhang, Jing]Inst Sci & Tech Informat China, Beijing 100038, Peoples R China
  • [ 4 ] [Lei, Xiaoping]Inst Sci & Tech Informat China, Beijing 100038, Peoples R China
  • [ 5 ] [Xu, Shuo]Beijing Univ Technol, Res Base Beijing Modern Mfg Dev, Coll Econ & Management, Beijing 100124, Peoples R China
  • [ 6 ] [Yang, Guancan]Renmin Univ China, Sch Informat Resource Management, Beijing 100872, Peoples R China

通讯作者信息:

  • 徐硕

    [Xu, Shuo]Beijing Univ Technol, Res Base Beijing Modern Mfg Dev, Coll Econ & Management, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

SCIENTOMETRICS

ISSN: 0138-9130

年份: 2020

期: 1

卷: 125

页码: 289-312

3 . 9 0 0

JCR@2022

ESI学科: SOCIAL SCIENCES, GENERAL;

ESI高被引阀值:79

被引次数:

WoS核心集被引频次: 46

SCOPUS被引频次: 72

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:593/4274355
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司