• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Deng, Feng (Deng, Feng.) | Bao, Chang-chun (Bao, Chang-chun.) (学者:鲍长春) | Kleijn, W. Bastiaan (Kleijn, W. Bastiaan.)

收录:

CPCI-S

摘要:

We propose a sparse hidden Markov model (HMM)-based single-channel speech enhancement method that models the speech and noise gains accurately in both stationary and non-stationary environments. The objective function is augmented with an l(p) regularization term resulting in a sparse autoregressive HMM (SARHMM). The method encourages sparsity in the speech-and noise-modeling, which eliminates the ambiguity between noise and speech spectra and, as a consequence, provides improved tracking of the changes of both spectral shapes and power levels of non-stationary noise. Using the modeled speech and noise SARHMMs, we first construct an estimator to estimate the noise spectrum. Then a Bayesian speech estimator is used to obtain the enhanced speech. The test results indicate that the proposed speech enhancement scheme performs much better than the reference methods in non-stationary environments, while providing state-of-the-art performance for stationary conditions.

关键词:

Speech Enhancement Non-stationary Noise Gain Modeling Sparse ARHMM

作者机构:

  • [ 1 ] [Deng, Feng]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing, Peoples R China
  • [ 2 ] [Bao, Chang-chun]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing, Peoples R China
  • [ 3 ] [Kleijn, W. Bastiaan]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing, Peoples R China
  • [ 4 ] [Kleijn, W. Bastiaan]Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington, New Zealand

通讯作者信息:

  • [Deng, Feng]Beijing Univ Technol, Sch Elect Informat & Control Engn, Speech & Audio Signal Proc Lab, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP)

ISSN: 1520-6149

年份: 2015

页码: 5073-5077

语种: 英文

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:1931/4279592
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司