• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qi, Na (Qi, Na.) | Shi, Yunhui (Shi, Yunhui.) (学者:施云惠) | Sun, Xiaoyan (Sun, Xiaoyan.) | Ding, Wenpeng (Ding, Wenpeng.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

CPCI-S

摘要:

Image super-resolution with sparsity prior provides promising performance. However, traditional sparse-based super resolution methods transform a two dimensional (2D) image into a one dimensional (1D) vector, which ignores the intrinsic 2D structure as well as spatial correlation inherent in images. In this paper, we propose the first image super-resolution method which reconstructs a high resolution image from its low resolution counterpart via a two dimensional sparse model. Correspondingly, we present a new dictionary learning algorithm to fully make use of the corresponding relationship of two pairs of 2D dictionaries of low and high resolution images, respectively. Experimental results demonstrate that our proposed image super-resolution with 2D sparse model outperforms state-of-the-art 1D sparse model based super resolution methods in terms of both reconstruction ability and memory usage.

关键词:

Sparse Representation 2D Sparse Model Dictionary Learning Super Resolution

作者机构:

  • [ 1 ] [Qi, Na]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 2 ] [Shi, Yunhui]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 3 ] [Ding, Wenpeng]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 4 ] [Yin, Baocai]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 5 ] [Sun, Xiaoyan]Microsoft Res, Beijing, Peoples R China

通讯作者信息:

  • 施云惠

    [Shi, Yunhui]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME)

ISSN: 1945-7871

年份: 2015

语种: 英文

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:853/3916388
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司