• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Qiang (Han, Qiang.) (学者:韩强) | Yuan, Wanying (Yuan, Wanying.) | Bai, Yulei (Bai, Yulei.) (学者:白玉磊) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

EI SCIE

摘要:

A large rupture strain (LRS) fiber reinforced polymer (FRP), with a rupture strain value of more than 5%, is a promising alternative to traditional FRPs with a 1-3% rupture strain for seismic retrofitting of reinforced concrete (RC) structures. The LRS FRPs provide a bilinear stiffness around concrete columns while this feature is linear for traditional FRPs (e.g., carbon FRP). This paper presents a careful analysis of the compressive behavior of LRS FRP wrapped square column, especially since their confining stress is nonuniformly distributed. A total of 66 square concrete columns, measuring 150 x 150 x 300 mm with varied corner radii from 0 to 75 mm were tested under monotonic axial compression. The experimental results, in terms of full stress-strain behavior, compressive strength, hoop strain distribution, and dilation behavior were systematically investigated. As the corner radius increases, the strength enhancement after LRS FRP confinement also increases, and the hoop strain is more uniformly distributed. The stress-train curves exhibit a triple-section pattern with a smooth transition zone. The peak dilation rate of LRS FRP-confined concrete is higher than that of traditional FRP-confined concrete, and the curve of dilation rate versus axial strain exhibits a remarkably long stable response. Moreover, results show that most existing models of FRP-confined concrete can provide conservative predictions for an improved compressive strength of LRS FRP-confined square concrete columns.

关键词:

Compressive behavior Confinement Fiber reinforced polymer (FRP) Large rupture strain (LRS) Square column

作者机构:

  • [ 1 ] [Han, Qiang]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 2 ] [Yuan, Wanying]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 3 ] [Bai, Yulei]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China
  • [ 4 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China

通讯作者信息:

  • 白玉磊

    [Bai, Yulei]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

MATERIALS AND STRUCTURES

ISSN: 1359-5997

年份: 2020

期: 4

卷: 53

3 . 8 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:37

JCR分区:2

被引次数:

WoS核心集被引频次: 49

SCOPUS被引频次: 55

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:733/2901425
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司