• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wen, Jing (Wen, Jing.) | Liu, Peng (Liu, Peng.) | Chen, Lajiao (Chen, Lajiao.) | Wang, Lizhe (Wang, Lizhe.)

收录:

CPCI-S EI Scopus

摘要:

Adaptive sparse representations of signals have drawn considerable interest in the past decade. In this paper, we address the problem of training dictionaries for massive images and propose a new algorithm for adapting dictionaries by extending the classical K-SVD based on only a single image. The approach presented in this paper aims at training the adapting dictionary from massive samples, other dictionary learning methods such as Online Dictionary Learning (ODL) and Recursive Least Squares Dictionary Learning Algorithm (RLSDLA) also could train the dictionary by using relative large samples. Our method is competed with the above two state-ofthe-art dictionary learning methods. Experiments demonstrate the effectiveness of the proposed dictionary learning in dealing with massive spatial-temporal remote sensing.

关键词:

作者机构:

  • [ 1 ] [Wen, Jing]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Lizhe]Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100094, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS)

ISSN: 2153-6996

年份: 2014

页码: 1293-1296

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:366/3896903
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司