• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Chao (Wang, Chao.) (学者:王超) | Chen, Yifang (Chen, Yifang.) | Xie, Wei (Xie, Wei.)

收录:

EI SCIE

摘要:

Currently the linear amplitude sweep (LAS) test is one of the main fatigue protocols to estimate the fatigue resistance of asphalt binder. In past 10-years, several data interpretation approaches have been developed for the LAS-based binder fatigue modeling. The objective of this paper is to compare the currently available analytical approaches for the data interpretation of LAS test and further investigate the potential links between the different LAS-based fatigue evaluations of asphalt binders. Totally 20 types of unmodified and modified asphalt binders are selected in this study, which actually cover 35 sample conditions under different aging and temperature levels. Experimental and analysis results indicate that the full fatigue performance of asphalt binder can be characterized from with the S-VECD & G(R) approach. The failure property in LAS test is also well correlated to the binder fatigue life simulation and thus can be utilized to more efficiently distinguish the binder fatigue resistance. Furthermore, the performance predictive accuracy of AASHTO TP101 specification method is strongly dependent on the selected failure definition. Taking the artificial failure definition of 35% reduction in |G*|.sin delta largely underestimates the binder fatigue life when compared to the S-VECD & G(R) approach. However, when a material-dependent failure definition of peak stress is alternatively employed in specification method, the correlation of the predictive binder fatigue life between the two analytical approaches is significantly improved and a linear relationship is additionally found between the S-VECD & G(R) approach and specification method. Therefore, it is recommended that when only the standard LAS test with one loading rate is available in practice, the peak stress failure definition should be used in AASHTO TP101 specification method to provide relatively accurate fatigue performance estimation of asphalt binder.

关键词:

Asphalt binder Fatigue damage Fatigue failure Linear amplitude sweep Time sweep

作者机构:

  • [ 1 ] [Wang, Chao]Beijing Univ Technol, Dept Rd & Urban Railway Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Yifang]Beijing Univ Technol, Dept Rd & Urban Railway Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Xie, Wei]Beijing Univ Technol, Dept Rd & Urban Railway Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 王超

    [Wang, Chao]Beijing Univ Technol, Dept Rd & Urban Railway Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

MATERIALS AND STRUCTURES

ISSN: 1359-5997

年份: 2020

期: 4

卷: 53

3 . 8 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:37

JCR分区:2

被引次数:

WoS核心集被引频次: 21

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:741/2901433
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司