• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Geng, Ling-xiao (Geng, Ling-xiao.) | Gao, Xue-jin (Gao, Xue-jin.) (学者:高学金)

收录:

CPCI-S

摘要:

For the difference and uncertainty between each batch of fermentation process, and currently the established models based on SVM are pre or off-line model, so once production conditions change, existing models may not be able to adapt to the new environment inevitably. And generalization capability of the model based on global learning support vector machine is not strong, so according to local learning theory the method of establishing the fermentation process dynamic model is proposed in this paper. The dynamic of the fermentation process model is realized through establishing the fermentation process dynamic sample sets. Taking the process of Escherichia coli producing interleukin-2 for example, experimental results verify that the method can establish a more accurate prediction model in the case of a smaller number of samples. Compared with the static SVM model, the dynamic model has a higher accuracy and a better dynamic adaptability.

关键词:

Local learning Fermentation process Dynamic modeling Support vector machine Dynamic sample sets

作者机构:

  • [ 1 ] [Geng, Ling-xiao]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 2 ] [Gao, Xue-jin]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China

通讯作者信息:

  • [Geng, Ling-xiao]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING (AISE 2014)

年份: 2014

页码: 451-457

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:245/3909228
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司