• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chang Peng (Chang Peng.) | Wang Pu (Wang Pu.) | Gao Xuejin (Gao Xuejin.) (学者:高学金) | Qi Yongsheng (Qi Yongsheng.)

收录:

CPCI-S

摘要:

A novel monitoring strategy based on Multi-way Mean vector component analysis (MMVCA) is proposed for the online fault detection of batch process. The faults that affect quality index are denoted as quality-related faults, which should be taken care of as soon as possible. The method is based on dimensionality reduction by preserving the squared length, and implicitly also the direction, of the mean vector of the original data. The optimal mean vector preserving basis is obtained from the spectral decomposition of the inner-product matrix, and it is shown to capture clustering structure. Unlike traditional Multi-way Principal Component Analysis (MPCA), these axes are in general not corresponding to the top eigenvalues. The proposed algorithm has been applied in penicillin fermentation system and plant data, to verify the effectiveness of the method.

关键词:

PCA MPCA Batch Process Fault Detection MVCA

作者机构:

  • [ 1 ] [Chang Peng]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Wang Pu]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Gao Xuejin]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Qi Yongsheng]Inner Mongolia Univ Technol, Coll Elect Power, Hohhot 010051, Peoples R China

通讯作者信息:

  • [Chang Peng]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA)

年份: 2014

页码: 1388-1394

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:2588/4249418
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司