• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhuo, Li (Zhuo, Li.) | Zhang, Pei (Zhang, Pei.) | Cheng, Bo (Cheng, Bo.) | Li, Xiaoguang (Li, Xiaoguang.) | Zhang, Jing (Zhang, Jing.)

收录:

CPCI-S

摘要:

Content-Based Image Retrieval (CBIR) characterizes the image content by extracting visual features, and measures the similarity according to the distance between the two features. This paper adopts CBIR to perform automatic tongue color analysis of Traditional Chinese Medicine (TCM). Firstly, we extract the visual features of tongue images to be analyzed, especially the color features; and then retrieve the similar tongue images from the database, which have been labeled by TCM doctors in advance. Finally, statistical decision method is exploited based on the retrieval results to classify the tongue color. Experimental results show that the proposed method can achieve the classification accuracy of 87.85% and 88.54% respectively for the colors of tongue substance and tongue coating. The proposed method in this paper can provide a new means for the tongue color automatic analysis of TCM, and it is also a new application of CBIR.

关键词:

Traditional Chinese Medical Tongue diagnosis statistical decision tongue image retrieval

作者机构:

  • [ 1 ] [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 2 ] [Zhang, Pei]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 3 ] [Cheng, Bo]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 4 ] [Li, Xiaoguang]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 5 ] [Zhang, Jing]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China

通讯作者信息:

  • [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV)

ISSN: 2474-2953

年份: 2014

页码: 637-641

语种: 英文

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:174/3911240
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司