• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Hang (Wu, Hang.) | Yang, Ji-jiang (Yang, Ji-jiang.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强)

收录:

CPCI-S

摘要:

In the current era massive datasets in healthcare are becoming much more available for analysis, where numerous features are designed or constructed to represent a patient. Feature selection algorithms play a key role in reducing the data dimension thus speeding up the succeeding learning algorithms as well as improving predicting accuracy. How to select the appropriate subset of features with low redundancy is one of the interesting problem in feature selection. In this paper, we present a new feature selection algorithm which aims to select low redundant features in the setting of grouped variables. We adopt a global optimization method based on Lipschitz continuity and present evaluation results on several datasets, which demonstrates the correctness and effectiveness of our algorithm.

关键词:

bioinformatics biomedical informatics data analysis data mining

作者机构:

  • [ 1 ] [Wu, Hang]Tsinghua Univ, Dept Automat, Beijing, Peoples R China
  • [ 2 ] [Yang, Ji-jiang]Tsinghua Univ, Res Inst Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Li, Jianqiang]Tsinghua Univ, Res Inst Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Li, Jianqiang]Beijing Univ Technol, Sch Software Engn, Beijing, Peoples R China

通讯作者信息:

  • [Wu, Hang]Tsinghua Univ, Dept Automat, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)

ISSN: 2639-1589

年份: 2014

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:169/3611088
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司