• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang Zhao-zhao (Zhang Zhao-zhao.) | Qiao Jun-fei (Qiao Jun-fei.) (学者:乔俊飞)

收录:

CPCI-S

摘要:

This paper presents a novel modular neural network called brain-like multi-hierarchical modular network (BMNN). Unlike most of the traditional modular neural network, the BMNN has a brain-like multi-hierarchical structure and uses a collaborative learning approach. In BMNN learning process, each input sample is learned by multiple sub-sub-modules in different sub-modules and the learning result of BMNN is the integration of the multiple sub-sub-modules learning results, which helps to improve the BMNN's learning accuracy and generalization ability. The learning algorithm of the sub-sub-modules is an algebraic method which greatly improves the BMNN's learning speed. Applied BMNN to mine gas concentration forecasting based on the practical production data, the forecasting results compared with BP neural network and RBF neural network, the experiment results show the validity of the proposed forecasting method and can provide the scientific decision for the safety in coal mine production.

关键词:

作者机构:

  • [ 1 ] [Zhang Zhao-zhao]LiaoNing Tech Univ, Inst Elect & Informat Engn, Huludao, Peoples R China
  • [ 2 ] [Qiao Jun-fei]Beijing Univ Technol, Coll Elect & Control Engn, Beijing, Peoples R China

通讯作者信息:

  • [Zhang Zhao-zhao]LiaoNing Tech Univ, Inst Elect & Informat Engn, Huludao, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)

ISSN: 2161-4393

年份: 2014

页码: 384-389

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:1230/4282599
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司