• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fu, Yifan (Fu, Yifan.) | Gao, Junbin (Gao, Junbin.) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰) | Hong, Xia (Hong, Xia.)

收录:

CPCI-S

摘要:

Traditional dictionary learning algorithms are used for finding a sparse representation on high dimensional data by transforming samples into a one-dimensional (1D) vector. This 1D model loses the inherent spatial structure property of data. An alternative solution is to employ Tensor Decomposition for dictionary learning on their original structural form-a tensor-by learning multiple dictionaries along each mode and the corresponding sparse representation in respect to the Kronecker product of these dictionaries. To learn tensor dictionaries along each mode, all the existing methods update each dictionary iteratively in an alternating manner. Because atoms from each mode dictionary jointly make contributions to the sparsity of tensor, existing works ignore atoms correlations between different mode dictionaries by treating each mode dictionary independently. In this paper, we propose a joint multiple dictionary learning method for tensor sparse coding, which explores atom correlations for sparse representation and updates multiple atoms from each mode dictionary simultaneously. In this algorithm, the Frequent-Pattern Tree (FP-tree) mining algorithm is employed to exploit frequent atom patterns in the sparse representation. Inspired by the idea of K-SVD, we develop a new dictionary update method that jointly updates elements in each pattern. Experimental results demonstrate our method outperforms other tensor based dictionary learning algorithms.

关键词:

作者机构:

  • [ 1 ] [Fu, Yifan]Charles Sturt Univ, Sch Comp & Math, Bathurst, NSW 2795, Australia
  • [ 2 ] [Gao, Junbin]Charles Sturt Univ, Sch Comp & Math, Bathurst, NSW 2795, Australia
  • [ 3 ] [Sun, Yanfeng]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 4 ] [Hong, Xia]Univ Reading, Sch Syst Engn, Reading RG6 6AY, Berks, England

通讯作者信息:

  • [Fu, Yifan]Charles Sturt Univ, Sch Comp & Math, Bathurst, NSW 2795, Australia

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)

ISSN: 2161-4393

年份: 2014

页码: 2957-2964

语种: 英文

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:92/3929202
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司