• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Mushtaq, Muhammad (Mushtaq, Muhammad.) | Guo, Xianwei (Guo, Xianwei.) | Wang, Yinzhong (Wang, Yinzhong.) | Hao, Liangwei (Hao, Liangwei.) | Lin, Zhiyuan (Lin, Zhiyuan.) | Yu, Haijun (Yu, Haijun.) (学者:尉海军)

收录:

EI Scopus SCIE PubMed

摘要:

The Li-O-2 battery based on the polymer electrolyte has been considered as the feasible solution to the safety issue derived from the liquid electrolyte. However, the practical application of the polymer electrolyte-based Li-O-2 battery is impeded by the poor cyclability and unsatisfactory energy efficiency caused by the structure of the porous cathode. Herein, an architecture of a composite cathode with improved oxidation kinetics of discharge products was designed by an in situ method through the polymerization of the electrolyte precursor for the polymer-based Li-O-2 battery. The composite cathode can provide sufficient gas diffusion channels, abundant reaction active sites, and continuous pathways for ion diffusion and electron transport. Furthermore, the oxidation kinetics of nanosized discharge products formed in the composite cathode can be improved by hexamethylphosphoramide during the recharge process. The polymer-based Li-O-2 batteries with the composite cathode demonstrate highly reversible capacity when fully charged and a long cycle lifetime under a fixed capacity with low overpotentials. Moreover, the interface contact between hexamethylphosphoramide and the Li metal can be stabilized simultaneously. Therefore, the composite cathode architecture designed in this work shows a promising application in high-performance polymer-based Li-O-2 batteries.

关键词:

Li-oxygen battery hexamethylphosphoramide polymer electrolyte oxidation kinetics composite cathode

作者机构:

  • [ 1 ] [Mushtaq, Muhammad]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Xianwei]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Yinzhong]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 4 ] [Hao, Liangwei]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 5 ] [Lin, Zhiyuan]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 6 ] [Yu, Haijun]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China

通讯作者信息:

  • 尉海军

    [Yu, Haijun]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ACS APPLIED MATERIALS & INTERFACES

ISSN: 1944-8244

年份: 2020

期: 27

卷: 12

页码: 30259-30267

9 . 5 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:169

被引次数:

WoS核心集被引频次: 20

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:371/5011900
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司