• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhou, Xiaolin (Zhou, Xiaolin.) | Sun, Guangmin (Sun, Guangmin.) (学者:孙光民) | Zhao, Dequn (Zhao, Dequn.) | Wang, Zhimeng (Wang, Zhimeng.) | Gao, Li (Gao, Li.) | Wang, Xiaomeng (Wang, Xiaomeng.) | Jin, Yufeng (Jin, Yufeng.)

收录:

CPCI-S EI Scopus

摘要:

An improved image enhancement algorithm based on genetic algorithm has been presented and applied for transmission line image processing in this paper, in which fuzziness is served as the optimization method of the image enhancement procedure. Because the complexity and uncertainty of the image itself, fuzzy theory has been used in the image processing. In this process, the parameters of the transformation function are found by the genetic algorithm. Thus, a new kind of image enhancement method is proposed by combining fuzzy theory with the genetic algorithm. Finally, compared with the traditional image enhancement methods, the method presented in this paper is better in performance.

关键词:

image enhancement image processing genetic algorithm fuzziness

作者机构:

  • [ 1 ] [Zhou, Xiaolin]Beijing Univ Technol, Dept Elect Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Guangmin]Beijing Univ Technol, Dept Elect Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhao, Dequn]Beijing Univ Technol, Dept Elect Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Zhimeng]Beijing Univ Technol, Dept Elect Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Gao, Li]Beijing Univ Technol, Dept Elect Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Xiaomeng]Beijing Univ Technol, Dept Elect Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Jin, Yufeng]Beijing Univ Technol, Dept Elect Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhou, Xiaolin]Beijing Univ Technol, Dept Elect Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2013 NINTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2013)

年份: 2013

页码: 223-226

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:29/3918835
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司