• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Bo (Liu, Bo.) (学者:刘博) | Fan, Haoqi (Fan, Haoqi.)

收录:

CPCI-S EI Scopus

摘要:

Recently emerged RGB-D sensors provide great promise for indoor scene understanding, which is a fundamental and challenging problem in computer vision. We present a discriminative model in this paper to semantically label indoor scenes from RGB-D images Unlike previous work which only labels pre-determined superpixels, we characterize the scenes with a set of planes and compose them into objects. The optimal way to composition and corresponding labels are inferred simultaneously using a greedy algorithm. Our model considers unary features and pairwise and co-occurrence context, as well as latent variables that account for multi-mode distributions of each object category. We train the model with latent structural SVM learning framework. Our approach achieves state-of-the-art performance on the Cornell RGB-D indoor scene dataset [1].

关键词:

latent structural SVM RGB-D indoor scene Semantic labeling

作者机构:

  • [ 1 ] [Liu, Bo]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Fan, Haoqi]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • 刘博

    [Liu, Bo]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

SIXTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2013)

ISSN: 0277-786X

年份: 2013

卷: 9067

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:1514/3896384
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司