• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Ying-Xu (Wang, Ying-Xu.) | Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Guo, Min (Guo, Min.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

One of the major obstacles in using deep belief network (DBN) is the structure design. Numerous studies, both empirically and theoretically, show that choosing suitable structure can improve the performance of DBN. In this paper, a self-organizing DBN (S-DBN), based on the information relevance strategy (IRS), was proposed to design the structure of DBN. For this IRS, the maximal information coefficient was designed to measure the input and output information relevance of hidden neurons. Meanwhile, the mutual information was introduced to measure the information relevance among the hidden layers. Then, a novel self-organizing strategy was developed to grow and prune both the hidden neurons and layers during the training process. Moreover, a contrastive divergence algorithm was used to adjust the parameters of S-DBN. Finally, several benchmark problems were used to illustrate the effectiveness of S-DBN. The experimental results demonstrate that the proposed S-DBN owns better performance for classification problems and modeling nonlinear systems than some existing methods. (C) 2019 Elsevier B.V. All rights reserved.

关键词:

Information relevance strategy Maximal information coefficient Deep belief network Mutual information Grow and prune

作者机构:

  • [ 1 ] [Wang, Ying-Xu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Guo, Min]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Jun-Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Ying-Xu]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Han, Hong-Gui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Guo, Min]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Jun-Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 9 ] [Wang, Ying-Xu]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 10 ] [Guo, Min]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China

通讯作者信息:

  • 韩红桂

    [Han, Hong-Gui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2020

卷: 396

页码: 241-253

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:618/4748946
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司