• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tu, Shanshan (Tu, Shanshan.) | Waqas, Muhammad (Waqas, Muhammad.) | Meng, Yuan (Meng, Yuan.) | Rehman, Sadaqat Ur (Rehman, Sadaqat Ur.) | Ahmad, Iftekhar (Ahmad, Iftekhar.) | Koubaa, Anis (Koubaa, Anis.) | Halim, Zahid (Halim, Zahid.) | Hanif, Muhammad (Hanif, Muhammad.) | Chang, Chin-Chen (Chang, Chin-Chen.) | Shi, Chengjie (Shi, Chengjie.)

收录:

EI Scopus SCIE

摘要:

Each fog node interacts with data from multiple end-users in mobile fog computing (MFC) networks. Malicious users can use a variety of programmable wireless devices to launch different modes of smart attacks such as impersonation attack, jamming attack, and eavesdropping attack between fog servers and legitimate users. The existing research in MFC lacks in the contributions of defense of smart attack and also requires in the discussions of subjective decision making by participants. Therefore, we propose a smart attack defense scheme for authorized users in MFC in this paper. First, we construct a static zero-sum game model between smart attackers and legitimate users based on prospect theory. Second, the double Q-learning (DQL) is proposed to restrain the attack motive of smart attackers in the dynamic environment. The proposed DQL method generates the optimum defense choice of legitimate users against smart attacks so that they can efficiently determine whether to use only physical layer security (PLS) to avoid those smart attacks. We use our scheme to contrast with the basic schemes, i.e., Q-learning scheme, the Sarsa scheme, and the greedy strategy. Experiment results prove that the proposed scheme can enhance the utility of legitimate users, restrain the attack motive of smart attackers, and further provide better security protection in the MFC environment.

关键词:

Mobile fog computing Reinforcement learning Physical layer security Smart attack Prospect theory Game theory

作者机构:

  • [ 1 ] [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Waqas, Muhammad]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Meng, Yuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Tu, Shanshan]Beijing Electromech Engn Inst, Beijing 100074, Peoples R China
  • [ 5 ] [Waqas, Muhammad]Ghulam Ishaq Khan Inst Engn Sci & Technol, Dept Comp Sci & Engn, Kpk 23460, Pakistan
  • [ 6 ] [Halim, Zahid]Ghulam Ishaq Khan Inst Engn Sci & Technol, Dept Comp Sci & Engn, Kpk 23460, Pakistan
  • [ 7 ] [Rehman, Sadaqat Ur]Namal Inst, Dept Comp Sci, Mianwali 42250, Pakistan
  • [ 8 ] [Rehman, Sadaqat Ur]Edith Cowan Univ, Sch Engn, Perth, WA 6027, Australia
  • [ 9 ] [Koubaa, Anis]Prince Sultan Univ, Dept Comp Sci, Robot & Internet Things Res Lab, R&D Gaitech Robot, Riyadh, Saudi Arabia
  • [ 10 ] [Koubaa, Anis]CISTER INESC TEC, Porto, Portugal
  • [ 11 ] [Koubaa, Anis]ISEP IPP, Porto, Portugal
  • [ 12 ] [Chang, Chin-Chen]Feng Chia Univ, Dept Informat Engn & Comp Sci, Taichung 40724, Taiwan
  • [ 13 ] [Chang, Chin-Chen]Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China
  • [ 14 ] [Shi, Chengjie]Chinese Acad Sci, Inst Informat Engn, Beijing 100195, Peoples R China

通讯作者信息:

  • [Meng, Yuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

COMPUTER COMMUNICATIONS

ISSN: 0140-3664

年份: 2020

卷: 160

页码: 790-798

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 19

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:1451/3896321
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司