• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Liming (Li, Liming.) | Zhao, Jing (Zhao, Jing.) (学者:赵京) | Wang, Chunrong (Wang, Chunrong.) | Yan, Chaojie (Yan, Chaojie.)

收录:

EI Scopus SCIE

摘要:

The multivariate statistical method such as principal component analysis based on linear dimension reduction and kernel principal component analysis based on nonlinear dimension reduction as the modified principal component analysis method are commonly used. Because of the diversity and correlation of robotic global performance indexes, the two multivariate statistical methods principal component analysis and kernel principal component analysis methods can be used, respectively, to comprehensively evaluate the global performance of PUMA560 robot with different dimensions. When using the kernel principal component analysis method, the kernel function and parameters directly have an effect on the result of comprehensive performance evaluation. Because kernel principal component analysis with polynomial kernel function is time-consuming and inefficient, a new kernel function based on similarity degree is proposed for the big sample data. The new kernel function is proved according to Mercer's theorem. By comparing different dimension reduction effects of principal component analysis method, the kernel principal component analysis method with polynomial kernel function, and the kernel principal component analysis method with the new kernel function, the kernel principal component analysis method with the new kernel function could deal more effectively with the nonlinear relationship among indexes, and its calculation result is more reasonable for containing more comprehensive information. The simulation shows that the kernel principal component analysis method with the new kernel function has the advantage of low time consuming, good real-time performance, and good ability of generalization.

关键词:

global performance indexes Robot kernel principal component analysis comprehensive performance evaluation dimensions optimizing selection principal component analysis new kernel function

作者机构:

  • [ 1 ] [Li, Liming]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, 100 Pingleyuan, Beijing 100022, Peoples R China
  • [ 2 ] [Zhao, Jing]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, 100 Pingleyuan, Beijing 100022, Peoples R China
  • [ 3 ] [Wang, Chunrong]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, 100 Pingleyuan, Beijing 100022, Peoples R China
  • [ 4 ] [Yan, Chaojie]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, 100 Pingleyuan, Beijing 100022, Peoples R China

通讯作者信息:

  • [Li, Liming]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, 100 Pingleyuan, Beijing 100022, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS

ISSN: 1729-8814

年份: 2020

期: 4

卷: 17

2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 28

SCOPUS被引频次: 41

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:1288/3854896
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司