• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Yi (Yang, Yi.) | Mao, Guojun (Mao, Guojun.)

收录:

CPCI-S

摘要:

The methods of data stream mining have recently garnered a great deal of attention in the field of data mining, and the sliding window technique has been widely used during many researches on it. This paper proposes a new type of self-adaptive sliding window (SASW) model, which has self-adjusting window parameters, and the technique details are presented under the ensemble learning method of single data stream environment. Experimental result shows that the definition of evaluating SASW parameters is appropriate and the gratifying results can be obtained. This idea also can be used in many other algorithms of data stream mining.

关键词:

ensemble learning -data stream mining SASW technique

作者机构:

  • [ 1 ] [Yang, Yi]Beijing Univ Technol, Sch Comp Sci, Beijing, Peoples R China

通讯作者信息:

  • [Yang, Yi]Beijing Univ Technol, Sch Comp Sci, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTELLIGENCE COMPUTATION AND EVOLUTIONARY COMPUTATION

ISSN: 2194-5357

年份: 2013

卷: 180

页码: 689-697

语种: 英文

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:413/3903770
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司