• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Pang, Juanbiao (Pang, Juanbiao.) | Huang, Qingming (Huang, Qingming.) (学者:黄庆明) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才) | Qin, Lei (Qin, Lei.) | Wang, Dan (Wang, Dan.) (学者:王丹)

收录:

CPCI-S

摘要:

Boosting has been extensively used in image processing. Many work focuses on the design or the usage of boosting, but training boosting on large-scale datasets tends to be ignored. To handle the large-scale problem, we present stochastic boosting (StocBoost) that relies on stochastic gradient descent (SGD) which uses one sample at each iteration. To understand the efficacy of StocBoost, the convergence of training algorithm is theoretically analyzed. Experimental results show that StocBoost is faster than the batch ones, and is also comparable with the state-of-the-arts.

关键词:

Boosting Classification Large scale problem Stochastic gradient descent

作者机构:

  • [ 1 ] [Pang, Juanbiao]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Yin, Baocai]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Dan]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Huang, Qingming]Chinese Acad Sci, Inst Comput Tech, Key Lab Intell Info Proc, Beijing 100190, Peoples R China
  • [ 5 ] [Qin, Lei]Chinese Acad Sci, Inst Comput Tech, Key Lab Intell Info Proc, Beijing 100190, Peoples R China

通讯作者信息:

  • [Pang, Juanbiao]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013)

ISSN: 1522-4880

年份: 2013

页码: 3274-3277

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:987/3645214
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司