• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qi, Na (Qi, Na.) | Shi, Yunhui (Shi, Yunhui.) (学者:施云惠) | Sun, Xiaoyan (Sun, Xiaoyan.) | Wang, Jingdong (Wang, Jingdong.) | Ding, Wenpeng (Ding, Wenpeng.)

收录:

CPCI-S

摘要:

An analysis sparse model represents an image signal by multiplying it using an analysis dictionary, leading to a sparse outcome. It transforms an image (two dimensional signal) into a one-dimensional (1D) vector. However, this 1D model ignores the two dimensional property and breaks the local spatial correlation inside images. In this paper, we propose a two dimensional (2D) analysis sparse model. Our 2D model uses two analysis dictionaries to efficiently exploit the horizontal and vertical features simultaneously. The corresponding sparse coding and dictionary learning algorithm are also presented in this paper. The 2D sparse model is further evaluated for image denoising. Experimental results demonstrate our 2D analysis sparse model outperforms a state-of-the-art 1D analysis model in terms of both denoising ability and memory usage.

关键词:

Dictionary Learning Image Denoising Sparse Representation 2D-KSVD 2D Analysis Sparse Model

作者机构:

  • [ 1 ] [Qi, Na]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 2 ] [Shi, Yunhui]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 3 ] [Ding, Wenpeng]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 4 ] [Sun, Xiaoyan]Microsoft Res Asia, Beijing, Peoples R China
  • [ 5 ] [Wang, Jingdong]Microsoft Res Asia, Beijing, Peoples R China

通讯作者信息:

  • [Qi, Na]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013)

ISSN: 1522-4880

年份: 2013

页码: 310-314

语种: 英文

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:816/3916261
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司