• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qi, Na (Qi, Na.) | Shi, Yunhui (Shi, Yunhui.) (学者:施云惠) | Sun, Xiaoyan (Sun, Xiaoyan.) | Wang, Jingdong (Wang, Jingdong.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

CPCI-S

摘要:

Sparse representation has been proved to be very efficient in machine learning and image processing. Traditional image sparse representation formulates an image into a one dimensional (1D) vector which is then represented by a sparse linear combination of the basis atoms from a dictionary. This 1D representation ignores the local spatial correlation inside one image. In this paper, we propose a two dimensional (2D) sparse model to much efficiently exploit the horizontal and vertical features which are represented by two dictionaries simultaneously. The corresponding sparse coding and dictionary learning algorithm are also presented in this paper. The 2D synthesis model is further evaluated in image denoising. Experimental results demonstrate our 2D synthesis sparse model outperforms the state-of-the-art 1D model in terms of both objective and subjective qualities.

关键词:

Synthesis Sparse Model Sparse Representation 2D-KSVD Image Denoising Dictionary Learning

作者机构:

  • [ 1 ] [Qi, Na]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 2 ] [Shi, Yunhui]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 3 ] [Yin, Baocai]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 4 ] [Sun, Xiaoyan]Microsoft Res Asia, Beijing, Peoples R China
  • [ 5 ] [Wang, Jingdong]Microsoft Res Asia, Beijing, Peoples R China

通讯作者信息:

  • [Qi, Na]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2013 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME 2013)

ISSN: 1945-7871

年份: 2013

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 9

在线人数/总访问数:778/3916121
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司