• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Jinduo (Liu, Jinduo.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Jia, Xiuqin (Jia, Xiuqin.) | Zhang, Aidong (Zhang, Aidong.)

收录:

EI SCIE

摘要:

Learning brain effective connectivity (EC) networks from functional magnetic resonance imaging (fMRI) data has become a new hot topic in the neuroinformatics field. However, how to accurately and efficiently learn brain EC networks is still a challenging problem. In this paper, we propose a new algorithm to learn the brain EC network structure using ant colony optimization (ACO) algorithm combining with voxel activation information, named as VACOEC. First, VACOEC uses the voxel activation information to measure the independence between each pair of brain regions and effectively restricts the space of candidate solutions, which makes many unnecessary searches of ants be avoided. Then, by combining the global score increase of a solution with the voxel activation information, a new heuristic function is designed to guide the process of ACO to search for the optimal solution. The experimental results on simulated datasets show that the proposed method can accurately and efficiently identify the directions of the brain EC networks. Moreover, the experimental results on real-world data show that patients with Alzheimers disease (AD) exhibit decreased effective connectivity not only in the intra-network within the default mode network (DMN) and salience network (SN), but also in the inter-network between DMN and SN, compared with normal control (NC) subjects. The experimental results demonstrate that VACOEC is promising for practical applications in the neuroimaging studies of geriatric subjects and neurological patients.

关键词:

ant colony optimization Ant colony optimization bayesian network Bayes methods Biomedical measurement Brain modeling Brain network effective connectivity Functional magnetic resonance imaging Indexes Informatics voxel activation information

作者机构:

  • [ 1 ] [Liu, Jinduo]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 2 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Jia, Xiuqin]Capital Med Univ, Xuanwu Hosp, Dept Radiol, Beijing 100053, Peoples R China
  • [ 4 ] [Zhang, Aidong]Univ Virginia, Dept Comp Sci & Biomed, Charlottesville, VA 22904 USA

通讯作者信息:

  • 冀俊忠

    [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

ISSN: 2168-2194

年份: 2020

期: 7

卷: 24

页码: 2028-2040

7 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:34

JCR分区:1

被引次数:

WoS核心集被引频次: 18

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:95/3602086
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司