• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jiang, Jiaojiao (Jiang, Jiaojiao.) | Zhang, Haibin (Zhang, Haibin.) (学者:张海斌) | Xue, Yi (Xue, Yi.)

收录:

CPCI-S

摘要:

Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based, linear representations of non-negative data. In this paper, we present a fast algorithm to solve local learning regularized nonnegative matrix factorization. We consider not only the local learning, but also its convergence speed. Experiments on many benchmark data sets demonstrate that the proposed method outperforms the local learning regularized NMF in convergence speed.

关键词:

Nonnegative matrix factorization NMF convergent speed local learning regularization

作者机构:

  • [ 1 ] [Jiang, Jiaojiao]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Haibin]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Xue, Yi]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • [Jiang, Jiaojiao]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

ADVANCES IN COMPUTATIONAL ENVIRONMENT SCIENCE

ISSN: 1867-5662

年份: 2012

卷: 142

页码: 67-75

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:619/3904000
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司