首页>成果

  • 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

[期刊论文]

Streaming algorithm for maximizing a monotone non-submodular function underd-knapsack constraint

分享
编辑 删除 报错

作者:

Jiang, Yanjun (Jiang, Yanjun.) | Wang, Yishui (Wang, Yishui.) | Xu, Dachuan (Xu, Dachuan.) (学者:徐大川) | 展开

收录:

EI Scopus SCIE

摘要:

Maximizing constrained submodular functions lies at the core of substantial machine learning and data mining. Specially, the case that the data come in a streaming fashion receives more attention in recent decades. In this work, we study the approximation algorithm for maximizing a non-decreasing set function underd-knapsack constraint. Based on the diminishing-return ratio for set functions, a non-trivial algorithm is devised for maximizing the set function without submodularity. Our results cover some known results and provide an effective method for the maximization on set functions no matter they are submodular or not. We also run the algorithm to handle the application of support selection for sparse linear regression. Numerical results show that the output quality of the algorithm is good.

关键词:

Non-submodular d-Knapsack constraint Streaming

作者机构:

  • [ 1 ] [Jiang, Yanjun]Ludong Univ, Sch Math & Stat Sci, 186 Hongqi Middle Rd, Yantai 264025, Shandong, Peoples R China
  • [ 2 ] [Wang, Yishui]Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
  • [ 3 ] [Zhang, Yong]Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
  • [ 4 ] [Xu, Dachuan]Beijing Univ Technol, Dept Operat Res & Sci Comp, Beijing 100124, Peoples R China
  • [ 5 ] [Yang, Ruiqi]Beijing Univ Technol, Dept Operat Res & Sci Comp, Beijing 100124, Peoples R China

通讯作者信息:

  • [Jiang, Yanjun]Ludong Univ, Sch Math & Stat Sci, 186 Hongqi Middle Rd, Yantai 264025, Shandong, Peoples R China

查看成果更多字段

相关文章:

来源 :

OPTIMIZATION LETTERS

ISSN: 1862-4472

年份: 2020

期: 5

卷: 14

页码: 1235-1248

1 . 6 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:46

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 14

近30日浏览量: 0

归属院系:

在线人数/总访问数:111/4530443
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司