• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao, Yuanyuan (Gao, Yuanyuan.) | Ruan, Xiaogang (Ruan, Xiaogang.) | Li, Bin (Li, Bin.)

收录:

CPCI-S

摘要:

Fuzzy logic system (FLS) promises an efficient way for obstacle avoidance. However, it is difficult to maintain the correctness, consistency, and completeness of a fuzzy rule base tuned by a human expert. In this paper, a novel approach termed probabilistic fuzzy controller with operant learning (PFCOL) for robot navigation is presented. Operant learning (OL) is a form animal learning way. The key feature of this approach is that it combines a probabilistic stage and a stochastic perturbation generator module into FLS to handle problems. At last, the ultimate output is determined by these two uncertain stages. This imitates animal learning method of generating stochastic behavior in the complex and uncertain environment. The simulation results show that the proposed PFCOL method can automatically generate approximate actor to adapt complex circumstances. Through studies on obstacle avoidance and goal seeking tasks by a mobile robot verify the approach is superior in generating efficient fuzzy inference systems.

关键词:

Robot navigation Probabilistic fuzzy controller Operant learning Fuzzy logic system

作者机构:

  • [ 1 ] [Gao, Yuanyuan]Beijing Univ Technol, Inst Artificial Intelligence & Robot, Beijing 100124, Peoples R China
  • [ 2 ] [Ruan, Xiaogang]Beijing Univ Technol, Inst Artificial Intelligence & Robot, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Bin]Shandong Transport Vocat Coll, Coll Mech & Elect Engn, Weifang 261206, Peoples R China

通讯作者信息:

  • [Gao, Yuanyuan]Beijing Univ Technol, Inst Artificial Intelligence & Robot, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012)

年份: 2012

页码: 368-373

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:115/4300118
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司