• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zan Tao (Zan Tao.) | Wang Min (Wang Min.) (学者:王民) | Hu Jianzhong (Hu Jianzhong.)

收录:

CPCI-S EI Scopus

摘要:

Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.

关键词:

data fusion machining status product quality statistical process control multi-sensors monitoring

作者机构:

  • [ 1 ] [Zan Tao]Beijing Univ Technol, Sch Mech Engn, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang Min]Beijing Univ Technol, Sch Mech Engn, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Hu Jianzhong]Beijing Univ Technol, Sch Mech Engn, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zan Tao]Beijing Univ Technol, Sch Mech Engn, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

FOURTH INTERNATIONAL SEMINAR ON MODERN CUTTING AND MEASUREMENT ENGINEERING

ISSN: 0277-786X

年份: 2011

卷: 7997

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:821/3898923
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司