• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Khan, Bushra (Khan, Bushra.) | Zhan, Wang (Zhan, Wang.) (学者:王湛) | Lina, Cheng (Lina, Cheng.)

收录:

EI Scopus SCIE

摘要:

The CA hybrid membrane with enhanced anti-fouling property and higher permeability was prepared by nonsolvent induced phase separation method combined with chemical reaction. The impacts of different solvents (N-methyl-2-pyrrolidone, N, N- Dimethylacetamide, Dimethyl sulfoxide and N, N-Dimethylformamide), organic acids (citric acid/fumaric acid) and titanium dioxide (TiO2) nanoparticles (NPs) on the separation performance and thermal stability of CA hybrid membranes were investigated. Results showed that the introduction of organic acids to membrane matrix caused asymmetry in the membrane structure with more uniform pore size distribution and higher porosity (82.5%). This is attributed to the production of CO(2)bubbles by a reaction between organic acid in the casting solution and salt in the coagulation bath. Meanwhile, a tremendous rise in anti-fouling property (from 89.7% to 94%), pure water flux (from 329.7 to 821.5 L/m(2)h) and permeation flux (from 265.8 to 546.3 L/m(2)h) indicates a significant improvement in the hydrophilicity and the permeability of prepared membranes. In addition, a significant improvement in thermal stability (by 90 degrees C) was achieved owing to the formation of dative bonds between TiO(2)NPs and CA polymer. Therefore, this approach can significantly improve the anti-fouling property and the separation performance of the CA membrane.

关键词:

separation techniques manufacturing porous materials

作者机构:

  • [ 1 ] [Khan, Bushra]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Zhan, Wang]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Lina, Cheng]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

通讯作者信息:

  • 王湛

    [Zhan, Wang]Beijing Univ Technol, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF APPLIED POLYMER SCIENCE

ISSN: 0021-8995

年份: 2020

期: 47

卷: 137

3 . 0 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:139

被引次数:

WoS核心集被引频次: 13

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:657/3902745
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司